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The evolution of the power spectrum of surface gravity waves is described by 
means of an energy transport equation. A slowly varying, prescribed ocean cur- 
rent and wind source are assumed to account for spatial inhomogeneities in the 
surface wave spectrum. These inhomogeneities lead to a new nonlinear wave- 
wave interaction mechanism. 

1. Introduction 
The complex turbulent structure of ocean surface waves has led to a variety of 

statistical descriptions of their properties. In  particular, the wavenumber 
spectrum Y(k) has provided a useful representation of ocean waves (see, for 
example, Phillips 1966). To describe the evolution of this spectrum a number of 
authors (Hasselmann 1962,1963; Snyder & Cox 1966; Barnett 1968; Thomson & 
West 1973) have introduced transport equations similar to that of radiative 
transfer or to the Boltzmann equation of kinetic theory. 

Such transport equations express the rate of change of the spectrum as a sum 
of terms which individually model physical phenomena thought to be important 
in the development of ocean waves. Of particular significance are wind genera- 
tion of waves (Phillips 1957; Miles 1957,1960)) nonlinear wave-wave interactions 
(Phillips 1960; Hasselmann 1960, 1962, 1963; West, Watson & Thomson 1974), 
the effect of an imposed surface current (Whitham 1961; Kenyon 1971) and 
the effect of wave breaking (Thomson & West 1973). A review of the modelling of 
these phenomena has been given by Hasselmann (1968). 

I n  his study of nonlinear wave-wave interactions, Hasselmann (1962, 1963) 
assumed the spectrum to be spatially homogeneous. The resulting contribution 
to the transport equation is a term of thivd order in the spectral function. 

The purpose of the present paper is to stJudy nonlinear wave-wave interactions 
when the spectrum varies with the position x on the ocean surface. New terms 
contributing to the transport equation are found which are of second order in the 
spectral function and which are non-vanishing only when the wave spectrum has 
a spatial variation. A non-uniform appearance of the sea surface is, in fact, not 
a t  all unusual. There are many possible causes of this, some of which are atmo- 
spheric wind turbulence, tidal current rips, internal wave activity, currents a t  the 
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mouth of a bay or estuary and interaction of wind waves with a long wavelength 
swell. To take account of such phenomena, we shall assume that a prescribed 
current U(X, t )  is present which varies over distances which are large compared 
with the surface wavelengths of interest and which varies slowly over times com- 
parable to the corresponding surface wave periods. A corresponding wave source 
will be modelled. As the wave system responds to these driving mechanisms, the 
nonlinear wave-wat e interactions provide a coupling of the excitation across 
the spectrum. 

2. The coupled mode equation for surface waves 
In  this section we shall describe surface wave dynamics with a set of nonlinear 

equations which couple the eigenmode amplitudes of linear waves. Similar equa- 
tions have been previously developed by other authors (see, for example, Phillips 
1960; Benney 1962; Hasselinann 1962, 1963). Since the various developments 
differ in detail, we briefly outline the derivation of our equations in appendix A. 

Incompressible irrotational flow is assumed. The fluid velocity is thus expressed 
as the gradient of a velocity potential 

a) = $+& (1) 

In (1) the velocity potential is given by a linear superposition of that of the short 
wavelength, high frequency surface waves, represented by q5, an; that of the long 
wavelength, slowly varying prescribed current, represented by a. The z variation 
of the surface current is assumed negligible for those surface waves being studied 
here. 

The undisturbed ocean surface is assumed t o  coincide with the plane z = 0 of 
a rectangular co-ordinate system. The z axis is directed upwards and thex, y plane 
lies in this surface. The horizontal flow associated with the prescribed current is 

h 

U(x,t) = VS@, z = 0, (2) 

where 0, is the gradient operator actitg in the horizontal plane, x = (x, y) is a 
vector in this plane, and we assume a) to  vary slowly y i th  z so that we can 
evaluate U a t  z = 0. The effect of the vertical flow la@/azl of the current is 
assumed to be negligible.? 

The equation for the sea surface can therefore be expressed as 

2 = t;(x,t), ( 3) 

where <(x, t) represents the short wavelength vertical displacement due to 
surface gravity waves. The velocity potential a t  the surface is then 

q5s(x,t) = @(x,z, t )  at z = C(x,t). (4) 

We represent the flow field by the complex amplitude Z(x, t),  defined by the 

( 5 )  
equations 

$5, = S'i~(Z+Z"), < = &(Z-Z"). 

t When U represents the fluid motion associated with a long swell, the effect of vertical 
motion can be neglected when the waves being studied have a wavelength short compared 
with that of the swell. 
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Here V ,  is the ‘velocity operator’ (g is the acceleration due to gravity): 

v, = ( g / 0 ) 3  = W , / 0 ,  0 = (-0,z)k (6) 

These quantities are assumed to operate on functions expressed as Fourier series, 
for which the proper operation is self-evident. For example, we assume Z to be 
a function defined in a rectangular ocean of area A,  (with periodic boundary 
conditions) and write 

Z(x,  t )  = C A(k) exp (ik . x), (7) 
k 

where the Fourier coefficients A(k) are time dependent. Thus 

where 

P i 2  = C V,A(k) exp (ik . x), 
k 

v, = (g/k)J = W k / k  

is the phase velocity of a small amplitude surface gravity wave of wavenumber E 
in deep water. The corresponding angular frequency is ok = (gk)J .  

In  our rectangular two-dimensional space representing the quiescent ocean 
surface, the Fourier exponentials satisfy the relations 

A G ~  d 2 X  exp (ik . X) = s,, 
A;lC exp (ik . x) = S(x), 

k 

where 8, is the Kronecker and 6(x) the Dirac delta function. 
The prescribed current is given the Fourier representation 

U(X, t )  = 2 U(K) cos ( K .  X -  QKt) ,  
K 

(9) 

where OK and U(K) are the appropriate functions of the wavenumber K. 
It is straightforward to obtain from the fluid-dynamic equations the first-order 

differential equation expressing the time rate of change of the A(k). The pro- 
cedure is outlined in appendix A. The resulting equation is (here A = dA/dt) 

A(k)+iwJ(k) = Tw(A)+Tu(A)+T2(A)+T3(A)+ ... . (11) 

In obtaining (1 1) we have neglected surface tension and have supposed the ocean 
to be much deeper than the longest wavelengths considered. We must therefore 
set equal to zero those amplitudes corresponding to wavelengt,hs comparable 
to or greater than the depth in (1 1). 

The term TJy models the effect of wind and viscosity. On the basis of a model 
of Miles (1957, 1960) we adopt for this the simple linear expression 

T,(A) = a(k)A(k). (12) 

Models for the coefficient a(k) have also been described by Phillips (1966). 
The quantity T, describes the coupling of the surface wave field to the pre- 

scribed current. From the equations in appendix A, this quantity has the form 

T, = - i I: [C-(k, K) A(k - K) exp ( - iQKt) + C+(k, K) A(k  + K) exp (iQKt)],  (13) 

where 
II 

C*(k, K) = $U(K) .  [k+ (k k K) ~ k / ~ ~ i k * K l ] .  (14) 
5 2  F LI 70 
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This is derived in appendix A and has t,he form 
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The term T, in (11) represents the nonlinear wave-wave interaction O(AZ).  

The explicit expressions for the coefficients I’ are given in equation (AS) of 
appendix A. 

Finally, the term T3 describes nonlinear wave interactions O(A3). This is shown 
in appendix A to have the form 

i 
41 ,p ,n  

T3(A) = - sk+n-l-p[r~~A(l)A(p)A*(n)+ rtfp , -nA(l )A(p)A(-n)  

+ r ~ - ~ ~ ~ A ( l ) A * ( - p ) A * ( n ) + ~ k , - p ~ - ~ ~ * A * ( - l ) A * ( - p ) A * ( n ) ] .  (16) 

Of the coefficients in (16), only will be needed in this paper. This is given in 
equation (A 9) of appendix A. The remaining terms in (16) tend to involve rapidly 
oscillating exponentials and are not expected to contribute significantly to 
transfer of excitation between modes, i.e. linear waves, in (11). 

The dots in (11) indicate that we have neglected higher-order terms in the 
A(k) and U(K). The terms kept are of the lowest order required to describe the 
transport phenomena of interest to us here. To obtain Hasselmann’s (1962,1963) 
transport equation, we should require terms to O(A5) in (11). 

It will prove convenient to eliminate the term T, from (11). To do this we write 

A(k) = a(k) + G(k), (17) 

where G satisfies the equation 

G(k) +iw,G(k) = T,(u). (18) 

This equation may be formally integrated to give 

G(k) = exp ( - iw,t) exp (iw,t’) T,(a) dt’ S 
Thus G is O(a2). The difference T;(a) = T,(A) - T2(a), expressed as a functional of 
the a’s, is O(a3). This lets us finally rewrite (11) in the form 

u(k) +ioka(k) = Tw(a)+Tu(a) +TL(a), (20) 

where Ti(a)  = T3(a) +!!?;(a) (21) 

and we have dropped terms of order higher than a3. We have also dropped the 
higher-order terms in T, and T,, which is consistent with our use of only simple 
linear models for these phenomena. 

We shall formally suppose that T,, T, and T3 are of the same order of smallness 
in (20). This permits us to evaluate (19) in a simple approximation: writing 
a(k) = q(k) exp ( - iw,t) and considering the time variation of the q’s to be very 
slow, we obtain 
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Substituting (22) into (21) lets us finally write 

i 
4l,P,Il 

!&(a) = - C 8 ~ + n - l - p C ~ ~ u ( l )  a(p) a*@) +terms not needed. (23) 

The 'terms not needed ' here have the form of the final three terms in (16). They 
involve rapidly oscillating exponentials and will not contribute significantly to 
the transport equation derived in the next section. The coefficient Ct: is given 
in appendix B. 

3. The power spectrum of the wave amplitude 
In  this section we shall construct a transport equation for the spectrum of the 

wave amplitudes using (20). To do this we shall require ensemble averages, 
denoted by angular brackets, of products of the a's over many observations of 
the sea state. 

We first observe that, since (20) is odd in the a's, it  is consistent with this 
equation to require that all averages of the product of an odd number of a's 
vanish. That is, 

(a(k)) = (a(k)a(l)a*(n)) = ... = 0. 

We next postulate quasi-Gaussian? closure : 

(4) 4 P )  a*(k) a*@)) = ( 4 1 )  a*@)) (a(p) a*@)) + ( 4 1 )  a*@)) (a(p)a"(k)). 
(24) 

We also assume that the averages of all other fourth-order products, such as 
(aaaa"), etc., vanish. 

Following Wigner (1932) we introduce the power spectrum of the a's through 
the definition 

P ( x , k )  = +x exp(ip.x)(a(k++p)a*(k-+p)) (25 a )  
P 

= ( 2 4 - l  d2rexp(-ik.r)(z(x++r)z*(x-&r)). ( 2 5 b )  

Here x(x, t )  = a(k) exp (ik . x), 
k 

which differs from the quantity (7) by terms O(a2). Using (5 ) ,  we see that 

k 

We may therefore consider P(x, k) to represent an approximation (cf. Hassel- 
mann 1968) to the power spectrum of the wave amplitude. The precise power 
spectrum of the wave amplitude will contain additional terms O(P2), which can 
be readily evaluated. 

t The closure postulate (24) has been used widely in statistical theories. A n  interesting 
argument suggesting the validity of quasi-Gaussian closure has been given by Benney & 
Saffman (1966) and by Benney & Newel1 (1969). These authors showed that when certain 
conditions are met the closure postulate is valid in the limit of zero modal coupIing strength. 

52-2 
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For most applications it is convenient to change from discrete to continuum 
normalization by replacing the sum 0%-er discrete wavenumbers by an int.egra1 
through the substitution 

This allows us to define 

with the normalization 

in the approximation (27). 
In  practice, the Wigner spectral function is useful only if Y(x, k) varies slowly 

over distances comparable to k-l for all k of interest. For oceanic applications 
this condition is usually well satisfied except near physical discontinuities. We 
thus introduce a characteristic distance W, over which Y(x, k) varies appreciably 
and assume that 

T"(x, k) = Ao(27r-2F(~ ,  k) (29) 

J'd2kY(x, k) z (W)) (30) 

k 9 W;' (31) 

(a(k+&e)a*(k-Qp)) z 0 (32) 

for those Ic of interest.? Referring back to ( 2 5 )  we see that (31) implies that 

for Ip /  9 Wgl. 
The spectrum of the energy per unit area is, correct t o  second order in the a's, 

E(x, k) = P09Y(X, k), 

where p, is the sea-water density.$ 

to time (see, for example, Snider 1960): 
To obtain the equation satisfied by F ( x ,  k), we differentiate (25 a )  with respect 

1 
aF(x'k) = 5x [(B(k+Sp)a*(k-&p))+ (a(k+&p)B*(k-+p))] 

at P 

x exp (ip . x). (33) 

The time derivative of the complex amplitude a(k) can be eliminated from (33) 
by substitution from (20). We then obtain on the right-hand side of (33) a sum of 
terms involving correlation functions such as 

(afk) (w), ( 4 P )  a(1) a*@) a*(k)). 

The latter is reduced to pair carrelation functions using (24). The pair correlation 
functions may then be expressed in terms of F by inverting ( 2 5 ) .  

It is straightforward to  evaluate the right-hand side of (33) using the above 
procedure and to simplify the resulting expression using the inequality (31). 

t This, for example, implies that L > K in (13). 
1 If we write a(k, t )  to indicate the explicit time dependence of the a(k)'s, we may 

express the spectral distribution of the wavenumber and frequency in the form 

Y(x, k, t ,  o) = {A,/[2(2n)3]} x dTexp ( i p  . x + io)~) 
P 

x (a(k+&, t+*T)a*(k-&p,  t - 4 7 ) ) .  

Tho equation satisfied by this quantity is more complicated than that for Y(x, k) and will 
be described in a subsequent publication. 
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The P’s may conveniently be replaced by Y’s using (29). The resulting equation 
for ’I? is finally 

(a/at+k. V,+k.Vk)Y(x, k) = a(k)Y(x, k) +S(x, k)Y(x, k). (34) 

In this equation 2 = k = -a,%, (35) 

where A? = k .  U+wk-/d2L@~Y(x,L) (36) 

and S(x,k) = (Vx.[-k(k.U)/(2k2)+Jd2L(91-92)’F(~,L)]]. (37) 

The coefficients Bl and B2 are defined by the equations 

We emphasize that the gradient operator V, in (37) does not act outside the 
curly brackets; i.e. does not act on Y(x, k) in (34). 

Equations (35) and (36) have the form of the familiar ray equations of wave 
propagation in the approximation of geometric optics. With % = k . U + wk they 
have previously been used (Whitham 1961; Kenyon 1971) to study wave refrac- 
tion by ocean currents. The integral term in (36) represents the influence of non- 
linear wave interactions on refraction and propagation. We shall describe some 
implications of this term in the following section. 

The first term, iiivolving the prescribed current U, in (37) represents the 
‘radiation stress’ introduced by Longuet-Higgins & Stewart (1960, 1961). This 
term may be transformed away if Y? is replaced by the flux spectrum 

@(X, k) I c k l  Y(X, k), (39) 

where C k  = 

to the equation 
is the linear wave group velocity. Substitution into (34) leads 

(a/at + k .Ox + k . v k )  @(x, k) = a(k) @(x, k) + S(X, k) @(X, k). ( 40) 

Here 
9 1 - B 2 - s ~ ~ ] Y ( x , L ) ] .  k 

Had we kept interactions up to fifth order in the amplitudes in (ZO),  we should 
have obtained Hasselmann’s (1960) transport terms as additional terms on the 
right-hand side of (34). The contribution of this paper is thus to add two new 
terms to the transport equation described by Hasselmann (1968) in his review 
article. These are the two terms involving integrals over the spectrum in (36) 
and (37). 

The additional term in (36) has a rather simple interpretation and is discussed 
in the next section. The integral term in (37) is more complex. It represent,s a 
coupling across the spectrum when the amplitude of a portion of the spectrum is 
spatially varied. 

When explicit variation of the wind is to be taken into account, we may replace 
a(k) by a suitable coefficient a(x, k, t )  in (34). 

52-3 
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4. The phase velocity of a ‘test wave’ 
The group velocity a t  a wavenumber k is obtained from (35) and (36) as 

dX/& = u-I-ck-1 d2Laly (X ,L)  Z C ( k ) .  (42) 

The meaning of the first two terms is obvious. The third term represents the 
influence of the nonlinear wave interactions. Since Y ( x , L )  will in genera.1 be 
asymmetric owing to the influence of wind and/or obstructions, the group 
velocity can have a component not parallel to k induced by the nonlinear 
interactions. 

Some insight can be obtained into (42) by considering a ‘test wave’ interacting 
with a spectrum of ocean waves in a uniform ocean. We imagine the test wave to 
be mechanically generated with identical characteristics for each of a sequence 
of observations. Thus we write 

a(1) = a,( l )+a’(k)&-, ,  (43) 

where a, is a random variable describing the ambient sea and a’ represents the 
small amplitude test wave. We substitute (43) into (20), neglect the prescribed 
current, wind and viscosity terms, and obtain a linear equation for a’(k) .  Because 
we have assumed a uniform ocean, 

1nt)egration with respect to time then gives us the angular frequency 

(44) 
- 
w k  = wk-j”d2L@kY’(L), 

where we have indicated no x dependence of ’Y. The phase velocity is ?&/k and 
the group velocity deduced from (44) is in agreement with that in (42). 

To illustrate the implications of (44) we consider the spectrum of Tyler et al. 
( 1974), which is based on a representat,ion proposed by Longuet-Higgins, 
Cartwright & Smith (1963). This is 

N (0-4 x 10-2/L4) [ G ( P ) / N ]  for k, < L < lc,, 
= 0 fur L < k, or L > k,. (45) 

Here the angular variation of the spectrum is given by 

and 

a(,!?) = a + ( 1 - a) cos i p )  

--n 

I n  these equations a is very small ( N lc, and k, are the long and short wave- 
length cut-offs of the spectrum respectively, and /3 is the angle between L and the 
wind direction. Finally, s(L) is a function of the wavenumber which is near unity 
for short wavelengths and becomes quite large compared with unity near L = k,, 
which causes the spectrum to be sharply peaked about the wind direction when 
L is near k,. 
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We shall evaluate (44) for wavelengths much shorter than the cut-off, or 

k $ k,. (46) 

I n  this case the principal contribution to the integral in (44) comes from values 
of L near k, and a simple analytic evaluation is possible. 

The coefficient Ctk  is obtained from equation (B 1) of appendix B. For k $ L, 
this is 

On evaluating the integral we find that 

C2: 2 -%LV’k.L. (47) 

(48) 
- 
w k  z + 1.4 x 10-2cosp (k/kO)’], 

where ,8 is the angle between k and the wind direction. The group velocity 
obtained from (48) is 

A 

vk&& = c k + w  [ l a 4  x 10-2cos/? (g/kO)t], (49) 
A 

where W is a unit vector parallel to the wind direction. 
During the series of experiments reported in Tyler et al. (1974), the ‘shadow’ 

of an island for receding waves was observed. At sufficiently large distances from 
the island this shadow is absent. There are evidently several possible causes for 
the filling in of the spectrum away from the island. One of these is nonlinear wave 
interactions, which we now discuss as an application of (34). 

Let us suppose that at a position x waves of wavenumber k are in the shadow 
of the island. Then Y(x, k) will be very small where effective shadowing occurs. 
On the other hand, we assume that Y(x, L) = Y(L) willnot have muchxdepend- 
ence for those waves L which have ‘missed ’ the island. If the shadowing angle is 
small, we can take (we now suppose that U = 0 and the effects of wind and 
viscosity can be neglected) S z 0 and dk/dt z 0 in (34). Equation (42) gives the 
group velocity C(k) with which waves of wavenumber k propagate into the 
shadow. If this were a time-dependent problem, with a sharply outlined shadow 
a t  t = 0,  say 9’’ = Yo(x, k), then a t  time t we should have 

Y(x, k) = Y ~ ( x -  C(k)t, k). 

Bi z 1.4 x lop2 sin (2p) (k/ko)8.  

(50) 

(51) 

The expression (50) would lead us to expect a triangular shadow of half-angle 

When waves travelling parallel to the wind are shadowed by the island, then the 
filling in of the spectrum will be modified. Should a significant portion of the 
spectrum be in the island shadow, then Y(L) in (42) must be appropriately 
modified. 
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Russ Davis and Dr Robert Stewart for several helpful conversations regarding 
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monitored by the Air Force Systems Command, Rome Air Development Center, 
Griffiss Air Force Base, New York 13440, under Contra.ct F30602-72-c-0494. 
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Appendix A. Derivation of equation (11) 
In  this appendix we show how to obtain the terms T,, T2 and T3 in (11). 
Let us first suppose that U = 0. Then Bernoulli’s equation and the kinematic 

boundary condition at  the surface are, respectively (see, for example, Phillips 
1966), 

z = 5. (A 1) 1 a#/at + *(V#)2 + gg = 0, 

KP+ (V,$) 1 (V,!3 = a$/% 
We re-express these equations in terms of $(x,z,t) evaluated on the surface 
z = c(x, t ) ;  that is, 

$Ax, t )  = $[x7 a x ,  t ) ,  tl. (A 2 )  

Then, we define W(x, t )  = [a$pzl,=, (A 3) 

a$,lat + gc = w aqat  - g(v, #, - wv, <)2 - g w2, (A 4a) 

aqa t -  w = -(vS$,- w v , ~ )  .v,<. (A 4b) 

and rewrite (A 1) as 

It remains to express W in terms of $,, which is a special and rather simple 
application of potential theory with a Dirichlet boundary condition (Jackson 
1962). This is easily done by first expressing both #, and W as Taylor series in < 
about the plane z = 0. Then W can be expressed in terms of 4, by successive 
substitution. The result is 

w = @A- [@(<@$,) - <@2$sl + {@[C@(t[@$,)l- 5[@2(c@$,)11 
- ~{@(<202$,) - <z03$s}. (A 5 )  

The term a</:lat can be eliminated from (A 4a)  using (A 4b), and W eliminated 
from both using (A 5). Finally, a first-order equation for 

2 = -q+ V;1$, (A 6) 

can be obtained by differentiation with respect to time and substituting from 
(A4). The Fourier expansion [equation (7)]  then gives us the terms T2 and T3 

To take account of the effect of the slowly varying current U, we replace the 
of (11). 

left-hand sides of (A 4a, b )  by the respective expressions 

The coefficients in T, in (15) are 
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The first coefficient in (16) (the only one required in this paper) is 

k n - 1  
'1,'p - a[(wn-Wp) I P - ~ I  ( k - l k - l l ) + ( ~ n - ~ ~ )  (l-nl ( k - l k - p l )  

- (y + O J ~ )  11 + p 1 (k - I k + nl ) + w p p ( k  - p )  + wJ(k  - 1 )  
- w,n(k - n)  - wl p . n - wp 1 . n - 20, I . p 

+ ( w 4 L / w , ) k ( n -  (-PI + I -  ( l + P l )  

825 

+(@,W,/W,)k(n- 1-11 + p -  I P + l l )  
- ( w z w p / w k ) k ( p - l p - n l  +Z-/I-nl]. (A 9) 

Since the condition (31) has been used in our derivation of (34), we must restrict 
ourselves to wavelengths small compared with the length scale W,. To do this, we 
suppose that the coefficients (A 8) and (A 9) vanish if any of their wavenumber 
arguments violates the condition (31).  

Appendix B. The coefficients in equation (23) 
For reference we quote the form of the coefficients of the a's in (23): 

rtfp-, r;-n,n r;,l-n r;-n3n + 
fop  - wn - wip-nl 

1 p n - p  r n - p , p  1 r 2 n - I  rn-1.1 
W E  - on - "il-nl 

-- 

[ c?; = r g  + 4 

-- 
2 wn - wp - W]p--nl 2 w, - wz - Wll-,I 

For the evaluation of the coefficients (40) certain of the terms in (B 1) appear to 
be singular, corresponding to the resonant excitation of arbitrarily long wave- 
lengths. In accordance with the discussion following (A 9), these terms are to  be 
dropped, corresponding to the assumed vanishing of the r coefficients. 

For the evaluation of (47) one should note the sequence of cancellations of the 
terms with powers of k greater than the first. 
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